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Planning of O&M for offshore wind turbines using Bayesian graphical
models

Jannie Jessen Nielsen & John Dalsgaard Sørensen
Department of Civil Engineering, Aalborg University, Denmark

ABSTRACT: The costs to operation and maintenance (O&M) for offshore wind turbines are large, and risk-
based planning of O&M has the potential of reducing these costs. This paper presents how Bayesian graphical
models can be used to establish a probabilistic damage model and include data from imperfect inspections and
monitoring. The method offers efficient updating of the failure probability, which is necessary for risk-based
decision making. An application example is presented to demonstrate the capabilities of the method.

1 INTRODUCTION
The costs to operation and maintenance (O&M) of
offshore wind turbines are large contributors to the
cost of energy. These costs can be reduced if better
maintenance strategies are used. Presently component
failures cause large costs to corrective maintenance.
Failure of even a minor component might cause esca-
lated damage, and the wind turbine stops producing
power until a repair or replacement is utilized. Be-
cause repairs of offshore wind turbines require good
weather conditions, the harsh environment often de-
lays the repair, and the production of energy is re-
duced. The costs to lost production and repairs can be
reduced if preventive maintenance strategies are used,
so damages are repaired before failure occurs.

Condition based maintenance is a preventive main-
tenance strategy where decisions on repairs are made
based on the actual condition of the components. This
knowledge is obtained using condition monitoring.
There exist a large number of condition monitoring
methods that in general can be divided into offline in-
spections and online monitoring, see (Walford 2006). A
review of condition monitoring methods for wind tur-
bines is given in (Hameed et al. 2009). The benefit of
condition monitoring has been quantified in (McMil-
lan and Ault 2007), and the benefit was found to be
highly dependent on the reliability of the condition
monitoring, which was not modeled explicitly. In the
project CONMOW it was concluded that the monitor-
ing methods still need development in order to detect
failures reliably (Wiggelinkhuizen et al. 2008).

Optimal planning of O&M should be based on risk-
based methods, where all information from past ex-
perience and condition monitoring is taken into ac-

count, and the uncertainties are modeled as realistic as
possible, see the framework for risk-based O&M for
wind turbines in (Sørensen 2009). Rational decisions
can be made based on a pre-posterior decision anal-
ysis where the expected costs through the lifetime of
the wind turbines are minimized, see theory in (Raiffa
and Schlaifer 1961).

For components exposed to deterioration processes
damage models can be used to describe the develop-
ment in damage size with uncertain parameters de-
scribed by stochastic models. Damage models are in
general associated with large uncertainties, and infor-
mation from (imperfect) inspections/online monitor-
ing should be included to make a more reliable pos-
terior estimate on the damage size. The Bayesian up-
dating can efficiently be done using Bayesian graphi-
cal models, and has earlier been used for deterioration
modeling, see (Friis-Hansen 2000) and the framework
in (Straub 2009). This paper presents how Bayesian
graphical models can be used to assist in decision
problems for O&M of offshore wind turbines, and
discusses how to include data from inspections and
monitoring properly.

2 DECISION MODEL
Decisions on inspections and repairs should be made
such that the expected costs through the lifetime are
minimized. For different inspection plans/methods
and different decision rules for repairs the expected
costs can be calculated based on a decision tree. For
wind turbine components it is relevant to consider
both corrective repairs that are required if failure oc-
curs, and preventive repairs, which can be made based
on the inspection/monitoring results. If it is assumed
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that a repaired component behaves like a new com-
ponent, the simplified decision tree in figure 1 can be
used.

Failure 

No repair 

Repair 

Failure 

No repair 

Repair 

Failure 

No repair 

Repair 

T=0 T=1 T=2 T=3 

Figure 1: Simplified decision tree.

The decision tree should be expanded to corre-
spond to the design life of the wind turbine. If either
repair type is performed, continuation should be made
from the beginning of the tree, but now the length of
the tree should be the remaining life time. Based on
the decision tree with the associated utilities and prob-
abilities, the optimal inspection plan and decision rule
can be found among a finite set of alternatives, see e.g.
(Straub 2004).

3 DETERIORATION MODELING
The primary focus should be on components that are
large risk contributors. In general offshore wind tur-
bine operators do not make failure data public avail-
able, and third parties have to be content with the
limited available material. For onshore wind turbines
public databases with failure data are available, e.g.
from the scientific measurement and evaluation pro-
gramme (WMEP), see (Faulstich et al. 2009). For a
generic offshore project the distribution of risk from
different contributors, divided by component and fail-
ure type, was shown in (Skjærbæk et al. 2009), and data
from different sources were collected in (McMillan and
Ault 2007).

In general most failures are caused by electric com-
ponents, control system, sensors and hydraulic sys-
tem. These failures are critical for offshore wind tur-
bines because of the limited accessability. Failures
from large components, i.e. gearbox, generator, main
shaft/bearing, and rotor, are rare, but the risk is high
because they cause long downtime, require large ves-
sels, and the spare parts are expensive.

3.1 Damage models
In order to use risk-based planning of O&M it is
necessary to establish a probabilistic damage model,
which allows for the calculation of the failure prob-
ability. Appropriate damage models requires knowl-
edge of the relevant failure types, what the cause
(load) is, and how they progress. The data for the prior
damage model can be obtained from theoretical mod-

els, experiments, and measured data for similar com-
ponents.

Components exposed to fatigue are typically de-
signed using SN-curves combined with the Palmgren-
Minor damage accumulation law. This model cannot
be used directly for risk-based inspection planning,
because it does not include a measurable damage size.
Therefore a fracture mechanical (FM) approach is
necessary, e.g. Paris law for crack propagation:

da

dN
= C ·∆Km (1)

This model gives the increase in damage per stress
cycle, da/dN , as function of the stress intensity factor
range, ∆K, and parameters C and m.

The FM curve can be calibrated to the SN-model so
the probability of failure or reliability index is equiv-
alent for the two models, see e.g. (Straub 2004). This
approach have been used in the context of risk-based
inspection planning of offshore steel jacket structures.
For wind turbine components exposed to other deteri-
oration processes a similar calibration to a crack prop-
agation law can be utilized.

The failure limit state could for a specific compo-
nent be chosen to the damage size that causes the
wind turbine to stop production. Another important
limit state is the damage level where it is not possible
to repair a damage, and instead requires a component
exchange because of escalated damage.

3.2 Condition monitoring
Condition monitoring is essential for updating of
the damage model in accordance with the actual
state of the component. Modern wind turbines are
equipped with a supervisory control and data acquisi-
tion (SCADA) system that monitors production, start
and stops, occurrences of alarms, and measurements
of e.g. temperature, tower vibrations, and fluid lev-
els. More advanced equipment are increasingly used,
i.e. vibration monitoring of bearings and gearbox, and
monitoring of fluid contamination, and other possible
techniques are strain measurement using optic fibers,
crack detection using acoustic emission sensors, see
(Walford 2006) and (Hameed et al. 2009). In addition a
number of offline monitoring methods are available,
e.g. analysis of oil samples, thermography of electric
components, and visual inspections.

In general the measurements obtained using con-
dition monitoring are indicators of the health of dif-
ferent components, or indicators of the load. Particles
in the gearbox oil indicates the extend of wear, vibra-
tion measurements can indicate damages in the drive
train, and power production and tower vibration mea-
surements gives indications of the loads from wind
and waves. All this data can in principle be used to
update the damage model, but as the measurements
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are not direct nor perfect measurement of the damage
size, the uncertainties should be taken into account in
the model.

For methods that gives an indication on whether a
damage is present or not, the probability of detecting
a damage can be modeled by a PoD-curve that gives
the probability of detection as function of the dam-
age size. An example is an exponential model with
parameters P0 and λ, see e.g. (Straub 2004):

PoD(a) = P0(1− exp(−a/λ)) (2)

For methods where a damage size or extend of dam-
age can be measured, the model should take the mea-
surement accuracy into account. This can be done by
either a additive or a multiplicative model. A simple
additive model assumes that the correct damage size,
a, equals the measured size, am, plus an error term
given as a normal distributed random variable with
mean zero, ε:

a = am + ε (3)

The indirect load measurements can be included in
a similar way with a measurement error on e.g. the
stress intensity factor range, ∆K, in equation 1.

4 BAYESIAN NETWORKS
A Bayesian Network is a graphical modeling tool that
originated in computer science for modeling of arti-
ficial intelligence, introductions can be found in e.g.
(Murphy 2001) and (Jensen and Nielsen 2007). The name
Bayesian refers to the well known Bayes rule for cal-
culation of a the probability of event A, given event
B:

P (A|B) =
1

P (B)
P (B|A)P (A) (4)

In the context of Bayesian updating, P (A|B) is the
posterior distribution of A given B, P (A) is the prior
distribution of A, and P (B|A) is the likelihood of A
given B.

A Bayesian network consist of a set of variables,
graphicly shown as nodes, and their causal relation-
ships, shown using directed links. Together the nodes
and links form a directed acyclic graph (DAG). If a
variable A causes B, A is a parent of B, which is a
child of A. Figure 2 shows a simple Bayesian network
with three nodes, where A is a parent of B and C.
If evidence is received about node A, it will change
the belief about node B and C. If instead informa-
tion about B is found, it will give indirect information
about A, therefore also change the belief about C.

The probability distributions are given as a condi-
tional distribution for each variable given the parents.
The joint distribution for a network with n nodes,

A 

B C 

Figure 2: Simple Bayesian network.

P (V ), can be found using the chain rule for Bayesian
networks:

P (V ) =
n∏

i=1

P (Ai|pa(Ai)) (5)

where Ai is the i’th variable in the network, and
pa(Ai) is the parents of Ai. When knowledge about
the value/state of a variable becomes available, it can
be entered in the network, and the marginal poste-
rior distribution of each node can be found using
Bayes rule. The calculation on posterior probabilities
in Bayesian networks is called inference.

In order to model deterioration the network should
allow the damage size to increase with time. This can
be done using a dynamic Bayesian network, that con-
sist of equal time slices, one for each time step. Each
time slice is connected only to the neighboring slices,
and will thus be independent of all other past slices
given the previous slice. This equals the property of
a Markovian process, but is general deterioration pro-
cesses are not Markovian. However (Straub 2009) used
a dynamic Bayesian network with time independent
parameters equal for each slice to make the Marko-
vian assumption hold.

4.1 Inference
The variables used for modeling of deterioration are
generally continuous. In general exact inference is not
possible for a network with continuous nodes, as op-
posed to networks with discrete nodes, where effi-
cient algorithms exist, see (Murphy 2002). Therefore
the variables have been discretized in previous appli-
cations where deterioration processes have been mod-
eled using Bayesian networks, see (Friis-Hansen 2000)
and (Straub 2009). But even though the inference can
be performed exact, the discretization introduces an
approximation for the probability distributions. The
nodes without parents, e.g. damage variables, can be
truncated without approximation. But in general dis-
cretization of conditional distributions introduces an
error. The damage size at one time step is in the model
in section 3.1 assumed to be a deterministic func-
tion of the parents. For a discrete model a conditional
probability distribution has to be found, which per-
forms an operation corresponding to the deterministic
function. For each combination of states of the node
representing the damage size at time t − 1 and the
nodes representing parameters in the damage model,
the probability that the damage size at time step t is in
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each state should be calculated, and this can be done
using sampling. The accuracy of this conditional dis-
tribution highly affects the final result when inference
is performed.

An alternative to the discrete models is to use con-
tinuous model, where approximate inference meth-
ods are needed. Markov Chain Monte Carlo (MCMC)
methods can be used to handle continuous distribu-
tions, e.g. the Gibbs sampling algorithm, see (Gelfand
and Smith 1990). The method was earlier considered
not to be usable for deterioration modeling partly
because it does not allow deterministic/logic rela-
tions among variables according to (Hrycej 1990). This
problem has been overcome in the program WinBugs
(Lunn et al. 2000), where it is possible to include logic
nodes, that are deterministic functions of other nodes.
These nodes are not considered as being variables,
and are not allowed to receive evidence. In the Gibs
sampling iteration scheme values are not drawn from
the logic nodes, but the logic relationship are used to
calculate the variables needed for the calculations.

The evaluation is performed via simulation from a
Markov chain that has the property that the stationary
distribution is the posterior. In Gibbs sampling, sam-
pling is performed from the full conditional distribu-
tions. In a Bayesian network a node is independent
of all other nodes given the Markov blanket (parents,
children, and parents of children). Thus the full condi-
tionals only contain these nodes, and can be evaluated
as (Lunn et al. 2000):

P (v|V \v) ∝ P (v|pa(v))×
∏

w∈ch(v)

P (w|pa(w)) (6)

where ch(.) means the children of. Since all distri-
butions in a Bayesian network is given conditional
on the parents, the distributions used for calculating
the full conditionals are known. Gibbs sampling is
performed by first choosing an initial value for all
variables. In a loop over all variables a new value
is sampled for each variable, given the value of all
other variables, so that the variables are updated in
turn. For three variables X , Y , Z the updating can be
performed in the following scheme, where ∼ means
”drawn from”:

Xi ∼ P (X|Yi−1,Zi−1)
Yi ∼ P (Y |Xi,Zi−1)
Zi ∼ P (Z|Xi, Yi)

(7)

In the first rounds of the loop the samples are influ-
enced by the initial values, X0, Y0,Z0, but after a burn
in period the set of values sampled using Gibbs sam-
pling can be shown to be a sample from the true pos-
terior distribution (Gelfand and Smith 1990).

5 APPLICATION EXAMPLE
This example demonstrates how Bayesian networks
can be used to update damage size and failure proba-
bility, when new information becomes available, and
be used for risk-based repair planning. A specific case
relevant for wind turbine O&M is considered, but
the model is in principle generic, and can easily be
changed to model other cases.

The considered failure mechanism is fatigue crack
growth in a main bearing with a mean time between
failures (MTBF) of 10 years. The crack growth is con-
sidered to be governed by the wind load on the wind
turbine, which is monitored in the SCADA system.
Further visual offline inspections are performed once
a year. Failure is defined as the crack size, that makes
the system shut down, and stops power production.
Thus it is detected if failure occurs. Failure is assumed
to occur at a crack size of 20 mm.

5.1 Damage model
The damage model considered is based on Paris’ law,
equation 1. In this example the formulation used in
(Friis-Hansen 2000) is used. Here the stress ranges are
assumed to follow a Weibull distribution and the dif-
ferential equation is solved to yield the following ex-
pression for the crack size at the i’th time step, ai,
given the crack size at previous time step, ai−1:

ai =
(
a

2−m
2

i−1 +∆KMUA
m
t

) 2
2−m

(8)

where the stress intensity factor range, ∆K, is found
using:

∆K = CNΓ
(
1 +

m

B

)
Y mπ

m
2

(
1− m

2

)
(9)

C and m are damage parameters, A and B is scale and
shape parameter for the Weibull distribution, Y is a
geometry constant, N is the number of load cycles in
each time step, and MU models the time independent
model uncertainty. The effect of the control system of
the wind turbine is assumed to be included in the load
model.

The values and distributions for the parameters are
given in table 1. Most of the variables are taken as
given in (Friis-Hansen 2000), but C is calibrated using
Crude Monte Carlo simulations with a time step of 3
months to give the assumed MTBF of 10 years.

5.2 Bayesian network
The Bayesian network is modeled in the program
WinBugs. The model consist of stochastic nodes,
logic nodes and constants, but only the stochastic and
logic nodes are shown in the graphical model. In ad-
dition to the continuous variables necessary for the
damage model, a discrete logic failure node is made
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Variable Distribution Mean CoV
m Deterministic 3 -
C Deterministic 6 · 10−12 -
B Deterministic 0.66 -
Y Deterministic 1 -
N Deterministic 106 /year -
a0 Exponential 1 mm 100 %
Ai Normal 5.35 MPa 18 %
MU Normal 1 18 %

Table 1: Distributions for damage parameters.

for each time step with the two states, 0 and 1, cor-
responding to no failure and failure respectively. The
mean of the failure node is thus the failure probability.

The indicators available in this example are:

• An inspection every year: uncertain measure-
ment of ai (additive measurement error)

• Continuous load measurement: uncertain mea-
surement of Ai (additive measurement error)

• If no failure has occurred, it is known

In order to take a measurement accuracy into ac-
count, a stochastic node has to be included for ai and
Ai with the names am,i and Am,i respectively. They
are both considered to be normal distributed with the
true value as mean, and standard deviations σa = 0.5
mm and σA = 0.25 MPa. This correspond to an ad-
ditive measurement error, and is a more convenient
notation in WinBugs.

The failure node, Fi, cannot directly receive the ev-
idence that failure has not occurred, because a logic
node cannot receive evidence. Therefore a stochastic
node also has to be made for the observation of the
failure node, and it is called Fm,i. This node follows
a Bernoulli distribution, where the probability of an
observation that is failure, is equal to the state of the
failure node. If the state of the failure node is 1, the
probability that Fm,i is 1, is 1. If the state of the fail-
ure node is 0, the probability that Fm,i is 1, is 0.

The nodes MU , a0, and Ai have no parents, and
their prior distributions are already given in table 1.
The distribution types of the other nodes are summa-
rized in table 2, and the Bayesian network is shown in
figure 3.

The time step is chosen to be 3 months. The
Bayesian network is made for 10 years, and thus con-
sist of 40 time slices. This gives a relatively low com-
putation time and the time step is short enough to
make use of information from monitoring between the
annual inspections.

A burn in period of 5000 samples and additional
25000 samples for the calculation of posterior distri-
butions, have been found appropriate to give a suffi-
cient good approximation of the failure probability.

Variable Distribution Parameters
ai Logic Eqn. 8
Fi Logic 1 if ai > 20 mm
am,i Normal µ = ai, σ = 0.5 mm
Am,i Normal µ = Ai, σ = 0.25 MPa
Fm,i Bernoulli p = Fi

Table 2: Distributions for nodes with parents.

a0 a1 

am1 

a2 

F1 

A1 

MU 

Fm1 

Am1 

am2 F2 

A2 

Fm2 

Am2 

Figure 3: First two time slices of the Bayesian net-
work. Grey nodes are logic nodes, white nodes are
stochastic.

5.3 Decision rule
In principle the decisions on repairs should be made
based on a life cycle analysis with a decision tree as
explained in section 2, where it is possible to take the
limited life time into account. For simplicity a more
simple decision rule is chosen for this example. This
decision rule is set as a limit value of the probabil-
ity of failure until next inspection. The limit value is
set such that the expected total costs for repairs and
failure per year is equal for the case where a repair is
performed at time t, and the case where the repair is
postponed a year to time t+∆t. The expected annual
costs for a repair performed at time t is:

E[Ct] =
CR

t
(10)

where CR is the cost of a preventive repair. If the re-
pair instead is postponed to time t + ∆t, there is a
probability of failure, PF , and the annual expected
costs are:

E[Ct+∆t] =
CF · PF +CR(1− PF )

t+∆t
(11)

where CF is the cost of failure. As the cost of failure is
larger than the cost of a preventive repair, the numer-
ator of the second expression is always larger than for
the first. But it is divided with a longer period, be-
cause the repair is postponed one year. For each value
of t the ’optimal’ limit failure probability, PFL, can
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be found by setting E[Ct] = E[Ct+∆t], which yields:

PFL(t) =
∆t

t(CF

CR
− 1)

(12)

In the example the ratio CF/CR is set to 5.

5.4 Results
Application of the above decision rule requires the
evaluation of the failure probability. In a situation
where no inspections and no load monitoring is avail-
able, the cumulative distribution of the failure time is
shown in figure 4, updated in year 1 to 4 with the in-
formation that no failure has yet occurred. The thick
black line shows the cumulative distribution reset for
each year, and can be compared with the limit value
for repairs, which is shown with the dashed line. As
the two lines intersect before four years, the decision
after observation in year three should be to repair.
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Figure 4: Cumulative distribution function of failure
time for case without inspections.

In order to illustrate a situation where inspections
are available for updating of the damage model, a re-
alization from the population has been chosen as case
study. The damage size and the uncertain observation
for each year until failure occurs are shown in table
3 for the specific realization. These observations and
the observation that no failure has occurred yet are en-
tered for one year at a time as evidence in the model.
The resulting failure probabilities are shown in figure
5, where the model is updated with new evidence in
year one to four. The thick black line again shows the
cumulative distribution reset for each year. In the case
without observations the probability of failure in the
third, fourth, and fifth year were each year in the range
0.10–0.15. In the case where observations are used to
update the model, the annual probability of failure is
very low until the fifth year, and the updated probabil-
ity of failure in the fifth year is more than 0.9. Even

Year 1 2 3 4 5
a [mm] 1.10 1.75 3.56 10.10 fail.
am [mm] 0.7 1.8 3.6 9.3 fail.

Table 3: Realizations of the damage size (a) and the
observations from annual inspections (am).

without the decision rule it would be clear that the
decision in year four should be to repair rather than
waiting until year five.
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Figure 5: Cumulative distribution function of failure
time in case with inspections.

Next the realizations of the uncertain measure-
ments are inserted as evidence in addition to the in-
spections. Figure 6 shows a box plot of the posterior
distribution of the damage size in each time step. For
each time step the present and all previous observa-
tions are used for the estimate. The actual damage size
for the realizations and the uncertain observations of
it are also shown.
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Damage size
Measurements of damage size

Figure 6: Box plot of damage size with inspections
and monitoring. The bullets shows the medians, the
filled bar is the range between the 25-75% quantiles.
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The observations at year one and four are both sig-
nificantly lower than the correct damage size, caused
by the randomness of the uncertain inspections. Thus
the Bayesian network also expects the damage to be
smaller than it actually is after year four, but the prob-
ability of it being larger is acknowledged. If the obser-
vations were trusted 100%, failure would be predicted
to occur later than it actually does. With a Bayesian
network the uncertainties are taken into account, and
the probability of failure can be used for risk-based
decision making.

In figure 7 the probability of failure is shown after
year four, updated for each three months. It is shown
both with and without inclusion of monitoring results.
It shows that the inclusion of monitoring results gives
better confidence in when failure will happen, and
shows that it in this case will be possible to postpone
the repair half a year with only low additional risk.
According to the decision rule the repair should be
performed after three month, but the failure probabil-
ity is still close to the limit value after half a year.
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Figure 7: Probability of failure between previous and
current monitoring result, based on previous monitor-
ing result. Or in the case without monitoring only up-
dated with the information that failure has not yet oc-
curred.

6 CONCLUSIONS
This paper presents how Bayesian graphical models
can be used to assist in decision problems for risk-
based planning of O&M for offshore wind turbines.
It is possible to use continuous nodes in the network,
when Gibs sampling is used to perform approximate
inference. In this paper it has been shown that it is
possible to model deterioration processes with such a
network, when e.g. WinBugs is used, where it is pos-
sible to make logic nodes as well as stochastic nodes.

An application example was used to show how a
Bayesian network can be used for inclusion of in-

spection results and load monitoring for updating of
the damage model. This gave a better estimate on the
probability of failure, and could be compared to a de-
cision rule given as a limit value of the failure proba-
bility. The model is generic and can easily be changed
to include other damage and inspection models, e.g.
condition monitoring results could be included. The
model can also be extended to include more compo-
nents, this can e.g. be relevant if one indicator is com-
mon for more components.
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